Cómo aprobar la certificación Databricks Spark 3.0

Finalmente ha llegado a mi correo mi certificación de Databricks Spark 3.0 tras haber aprobado dicho examen. El examen lo presenté el 14 de abril del 2021 y les voy a contar brevemente como fue el examen, de qué trata y qué hice para aprobarla.

El examen

Las características del examen son las siguientes:

  • Duración: 120 minutos.
  • Consta de 60 preguntas y apruebas con al menos 42 aprobadas (es decir, el 70%). Las cuales se distribuyen aproximadamente de la siguiente manera:
    • Spark Architecture: Conceptual understanding (~17%)
    • Spark Architecture: Applied understanding (~11%)
    • Spark DataFrame API Applications (~72%)
  • El examen es online y presentas desde por ejemplo tu casa, eso si, te estarán viendo por la cámara de tu ordenador, por lo cual no puedes ni debes abandonar tu sitio durante el examen, por lo cual asegúrate de hacer tus necesidades antes del examen.
  • No podrás tener accesorios a la mano como móviles, relojes, etc. Sencillamente cuentas con tu ordenador y en el examen te darán distintos PDF que abarcan todo el API.
  • Al comprar el examen seleccionas si presentarás el examen enfocada en la API Python o Scala de Spark.

OJO: No olvides días previos al examen entrar a la Web del examen y culminar el alta, que consiste en un software que reconoce tu rostro. NO LO DEJES PARA ÚLTIMO MOMENTO.

El examen consta de únicamente preguntas de selección múltiple, aunque eso si, no todas van de conceptos, las preguntas dada mi experiencia se componen de:

  • Evaluación de conceptos, por ejemplo: Cuales de las siguientes características no pertenece a las narrow transformations. NOTA: Cuidado con esas negaciones.
  • Dado un trozo de código seleccionar la opción que indique la razón del fallo.
  • Dado un trozo de código seleccionar la opción que representa el resultado final.
  • Dado un trozo de código incompleto seleccionar la opción que contiene esas partes de código que se usarían para completar el trozo de código para poder llevar a cabo una tarea de forma exitosa.

Las preguntas

Tal cual como lo indica la página dedicada a la certificación el contenido a evaluar es:

  • Arquitectura de Spark y el nuevo AQE (Adaptive Query Execution)
  • API Dataset:
    • Seleccionar, renombrar y manipular columnas.
    • filtrado, ordenamiento, eliminación y agregación de registros (filas).
    • Joins entre tablas, lectura, escritura y particionamiento en DataFrames.
    • UDFs y funciones Spark SQL.
  • Hay preguntas no solo del API Dataset sino también propiedades de configuración como por ejemplo spark.sql.shuffle.partitions
  • Las preguntas de completado de código eran como el siguiente ejemplo:

Donde las opciones a escoger serían:

  1. readDF, text, load
  2. readDF, ‘csv’, csv
  3. read, ‘csv’, load => Opción correcta
  4. read, csv, load

La plataforma te permite marcar preguntas para ser revisadas más adelante, cosa que yo aconsejo utilizar, hacer una pasada rápida por las preguntas, selecciona una respuesta y sobre aquellas que se tenga una mínima duda sencillamente se marca y le das una revisión, de esta forma tendrás oportunidad de responder todas las preguntas y revisar en 2 o hasta 3 ocasiones todas las preguntas que hayas dejado marcadas.

Finalizado el examen

Tan pronto finalizas el examen podrás observar por pantalla una valoración no definitiva del resultado de la prueba y minutos después recibirás un correo con la nota, donde ya te indican si aprobaste (o no, pero si sigues mi receta aprobarás) y luego pasados unos 7 días hábiles o quizás un poco menos recibes tu certificado por correo.

Receta para aprobar el examen

Ahora es tu turno, te animas a afrontar este reto, tienes alguna otra certificación en mente, estás indeciso en cual certificación de Spark tomar o si por el contrario ya presentaste está o alguna otra certificación cuéntanos qué tal te fue.

Primeros pasos con PySpark y PyCharm

Quienes me conocen saben que soy fan de IntelliJ, ya llevo unos cuantos años desde que dejé de usar eclipse y la verdad es que estoy encantado con la decisión que tomé, para mí es la mejor herramienta para desarrollo Java, Scala (y supongo que Kotlin).

Actualmente Spark está en mi día a día ya sea a modo desarrollo programando en Scala, razón por la cual uso continuamente IntelliJ sino también en la formación tanto en Scala como en Python, hasta hace poco para las formaciones de PySpark (entiéndase Spark con el API de Python) utilizaba los Jupyter notebooks (e incluso la plataforma de Databricks pero eso da para otra entrada en el blog) pero estaba la curiosidad que poco a poco se ha convertido en una necesidad de contar con una herramienta más potente que permitiese hacer debug, que integrase Git, hacer markdown, autocompletado de código, permita estandarizar el código, etc. Si lo meditan un poco casi todo de una forma u otra se puede alcanzar con los Jupyter notebooks, pero lo que cambia es la forma de programación, ya que con un IDE sería programación al uso (sea esta funcional o no), mientras que con los notebooks sería programación literaria, es decir, un entorno más enfocado a la explicación y documentación del código y hoy en día ampliamente utilizado por científicos de datos (data scientists), mientras que el primero (IDE) más utilizado por los ingenieros de datos (data engineer).

Finalmente nos hemos puesto manos a la obra en probar varios IDEs en el equipo y yo no quise desperdiciar la oportunidad de trastear con PyCharm y hacer mis primeras pruebas de programación de PySpark y es lo que comparto ahora con ustedes.

Antes que nada hay ciertos requisitos previos:

  1. Tener instalado Spark
  2. Tener instalado Python

Está vez no les voy a mostrar como instalar Spark, ya que hay muchísimas fuentes que nos explican como hacerlo pero en cualquier caso hay que tener claro que es necesario Java 8 (al menos) y declarar las variables de entorno SPARK_HOME y HADOOP_HOME, la primera apuntando a la ruta de la instalación de Spark y la segunda a la ruta base de donde se instalará el winutils.

El otro requisito es Python, hay distintas formas de instalar python que tampoco explicaré aquí, pero resumiendo puede ser instalando el lenguaje (y luego pip si se desea o es necesario instalar otra dependencia) o mediante anaconda, yo he elegido este último ya que es un entorno que trae consigo ya instalado jupyter notebooks además de otras herramientas, en cualquier caso si alguien tiene cierta curiosidad de cuando instalar pip o anaconda les dejo este articulo de stackoverflow que no tiene desperdicio.

Anaconda y sus aplicaciones

Ya entrando en materia, el primer paso es descargar e instalar PyCharm (este podría incluso llegar a instalarse desde Anaconda, yo preferí descargarla para contar con la versión mas reciente). Yo lo hice con la versión community

Una vez instalado y ejecutado por primera vez, crearemos un nuevo proyecto y deberemos especificar nuestro entorno (environment), yo soy de los que prefiere crear un entorno por proyecto debido a que cada proyecto python (en general) puede ser diferente en cuanto a dependencias características, etc. llegando incluso a diferir la versión de python entre 2 y 3. A su vez dejo marcada la opción de que genere un main.py tal cual como aparece en las imágenes.

El IDE nos genera un main.py que hace de esqueleto de la aplicación, lo editamos con un trozo de código que genera un DataFrame y mostrará parte de su contenido mediante la invocación del método show quedando de esta manera


# This is a sample Python script.
# Press ⌃R to execute it or replace it with your code.
# Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings.
def print_hi(name):
# Use a breakpoint in the code line below to debug your script.
print(f'Hi, {name}')  # Press ⌘F8 to toggle the breakpoint.
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
print_hi('PyCharm')
try:
#import findspark;
#findspark.init()
from pyspark import SparkContext, SparkConf
except ImportError:
raise ImportError("Unable to find pyspark -- are you sure SPARK_HOME is set?")
import random
from pyspark.sql import SparkSession
spark = SparkSession \
.builder \
.appName("PyCharm Example") \
.getOrCreate()
mi_rango = spark.range(1000).toDF("numero")
mi_rango.show()
# See PyCharm help at https://www.jetbrains.com/help/pycharm/
Si este código tratamos de ejecutarlo (Menu Run->Run main), este falla. Esto se debe a que es necesario incluir las dependencias propias de Spark, por lo cual es necesario incluir la carpeta python de la instalación de Spark (sería $SPARK_HOME/python) y además la carpeta py4j ubicada en $SPARK_HOME/python/lib/py4j-xxx-.zip

El añadir py4j es una de las alternativas que existen para poder hacer ejecuciones en local del código. Otra alternativa es instalar py4j como dependencia del entorno (environment) y de hecho la misma herramienta te ofrece la alternativa como se refleja en la imagen a continuación

Ahora podemos darnos cuenta que ya no se resaltan (en rojo) parte del código. Procedemos de nuevo a ejecutar el código y nos damos cuenta que este se ejecuta exitosamente.

Ya estamos a punto de terminar pero falta un pequeño detalle, el IDE todavía nos marca unos warnings, por ejemplo el código comentado y esto se debe a que por defecto PyCharm ya aplica PEP8 como estándar al código y por ende todo aquello que no cumpla con el estándar definido será resaltado para su corrección como se muestra en la imagen.

Incluso si hacemos clic en el símbolo de warning (cuidado) ubicado en la parte superior derecha, nos listará las cosas a mejorar que cumplan con el estándar. Una vez listado los warnings procedo mejorar el código quedando de la siguiente manera

Finalmente el código (aunque es muy simple) ya cumple con el estándar PEP8 y nos ha resultado relativamente sencillo poder ejecutar nuestro código desde el mismo IDE, además la herramienta nos permite sin salir de ella acceder a linea de comandos, hacer control total de Git (pull, push, commit, comparación entre ramas y más), poner breakpoints y realizar debug del código. Otra cosa a comentar es que aun cuando no hayamos definido el SPARK_HOME (cosa que no recomiendo) y el HADOOP_HOME, estas variables podemos definirlas antes de ejecutar el código mediante Edit Configurations.

Ha sido un ejemplo muy simple pero creo que refleja parte del potencial de la herramienta, aunque no todos son buenas noticias, por ejemplo la versión community no permite abrir y ejecutar jupyter notebooks cosa que si permite la versión de pago, llegando incluso a permitir la ejecución celda a celda y esta es una característica muy deseada que algunas herramientas si lo permiten como es el caso de VSCode, sin embargo esto no empaña para nada las capacidades que tiene y puede aportarnos de cara a la productividad.

Uso del SHOW PARTITIONS en Spark

Seguro que en alguna ocasión nos ha tocado hacer un SHOW PARTITIONS de una tabla HIVE particionada, con la finalidad (para quien no lo sepa) de obtener/visualizar las particiones existentes de los datos. Hasta aquí nada nuevo, pero lo que quiero mostrarles en esta oportunidad es un método (nada espectacular) que me ha servido mucho donde obtengo las particiones de una tabla (Hive) y los usos que le he dado al método, entre otras con grandes ventajas en performance.

Como seguramente muchos de ustedes saben si invocamos un SHOW PARTITIONS en spark por ejemplo en la spark-shell, esta nos devuelve un DataFrame con una única columna, como el siguiente ejemplo:

Con mi método lo que hago es transformar el DataFrame original en uno formateado donde cada variable de particionado es una columna. A continuación el método y el que sería el DataFrame resultante

Ahora ustedes se preguntarán y que hay de fascinante o interesante en este método. La verdad que el método en sí aporta poco es sencillamente una simple transformación pero para mí la magia reside en para que lo utilizo y es lo que les quiero contar.

Imaginen que la tabla que posee las 5 variables de partición (ni discutamos si es acertado poseer 5 variables de particionamiento) posee un sin fin de particiones y que a su vez para una misma ciudad en una misma fecha hay varias particiones por hora (como aparece en el ejemplo para la ciudad de Valencia) y cada partición a su vez tiene muchos registros. Con este supuesto si quisiéramos hacer una consulta para obtener la máxima partición (la más reciente) para una fecha, ciudad, estado y país en especifico podríamos llegar a tener problemas de TimeOut o SocketTimeOut ya que:
* El cluster se vería exigido intentando trabajar sobre las particiones pertinentes (debido al gran número de particiones).
* Una vez obtenidas las particiones cargar los datos desde HDFS y recorrer de forma innecesaria un conjunto de datos requiriendo mucho más memoria de la necesaria.

¿Recorrer de forma innecesaria?
Si, ya que recorreríamos un conjunto de registros donde muchos de esto compartirán el valor de la columna «hora» (partición) y apegándonoslos al ejemplo de arriba (la ciudad de Valencia) realmente los valores posibles serían 2:
* 1700
* 1750

Solución: Pues al obtener el DataFrame de particiones, si posteriormente filtramos por país, estado, ciudad y día solo nos quedarían 2 registros para el campo hora y sencillamente tendría que hallar el máximo valor de 2 registros en vez de tener que cargar datos de HDFS e iterar sobre todos estos.

¿Mucha más memoria de la necesaria?
Si, ya que al hacer un SHOW PARTITIONS, nosotros interactuamos con el metatstore y los metadatos en vez de trabajar con todos los datos de HDFS con todo lo que eso implica en cuanto a latencia, debido a la necesidad de ir a disco, etc.

¿Existe alguna otra ventaja de trabajar con el metastore?
Si, por ejemplo para hallar la máxima partición, trabajando únicamente con el DataFrame de particiones y una vez hallada la partición idónea, digamos que la más reciente, entonces construyo la consulta (muy especifica) indicando los valores de la partición deseada evitando esos errores de TimeOut haciendo uso eficiente de los recursos. De hecho yo lo que hecho es construir un WHERE dinámico (quizás lo comparto en la próxima entrada) a partir del DataFrame de particiones filtrado.

¿Se te ocurre otra ventaja de utilizar un método como este e interactuar con el metastore? ¿Habías hecho algo similar para tener mejoras de rendimiento y uso eficiente de recursos?

Espero que les sea de utilidad.

Mi receta para aprobar la certificación CCA Spark and Hadoop Developer

Hola de nuevo mi gente, como ya es costumbre tenía tiempo sin escribir, de hecho la última vez fue para anunciarles que había aprobado la certificación de solution architect de AWS y comentarles mi receta para aprobarla, bueno en esta ocasión les traigo mi receta para aprobar la certificación CCA Spark and Hadoop Developer (CCA175) de Cloudera. Bueno primero comentarles que esta certificación me resulto fascinante, por distintas cosas, la primera fue que tenía un completo desconocimiento sobre la forma como sería el examen, la segunda es que es totalmente práctica y el contenido dependiendo de como se mire puede ser amplio o no, de acuerdo a cuanto se desee profundizar.

Algunos aspectos del examen: tiene una duración de 2 horas, se aprueba con el 70% y pueden ser entre 8 y 12 preguntas (en mi caso fueron 9). El examen se lleva a cabo de forma online a través de un máquina virtual a la que accederás desde el navegador (chrome), de tu ordenador y será estrictamente necesario tener una webcam mediante la cual un vigilante (proctor) estará atento a que no hagas trampa, también tendrás a disposición una serie de enlaces de documentación referente a las herramientas que puedes utilizar en el examen, como pueden ser la documentación oficial de sqoop, spark, hive, cloudera, por mencionar algunas. En el examen no te veras obligado a utilizar una herramienta en especial, es decir, lo que importa es el resultado final, si este lo consigues con Pig, Hive, Spark, impala, Flume, pues perfecto, lo que esta claro es que hay herramientas que terminan siendo más adecuadas que otras dependiendo del caso.

Dada mi experiencia les sugiero estudiar los siguientes tópicos:

  • Importar y exportar usando sqoop y en ambos casos considerar el uso y cambio de delimitadores de campos así como de lineas. En el caso particular de la importación tener en cuenta compresión (por ejemplo Gzip) y formatos de archivo (texto, avro, parquet), a su vez conocer como y cuando utilizar los argumentos, -m, -split-by, -where, -query, -columns, -warehouse-dir, -target-dir, por mencionar algunos.
  • Crear una tabla en Hive cuya fuente de datos sean ficheros de texto, o que los datos estén serializados en Parquet, ORC o AVRO (tener en cuenta evolución del schema) y que a su vez estén comprimidos. CTAS (Create Table as Select) y exportar desde hive un fichero tanto a HDFS como al FileSystem producto de una consulta.
  • Haciendo uso de Spark hacer Lectura de datos en distintos formatos (texto, json, orc, parquet o avro) e incluso comprimidos y a partir de estos llevar a cabo una transformación de los datos y exportar el resultado a uno de los posibles formatos mencionados anteriormente.
  • La Máquina virtual trae consigo eclipse y sublime, les sugiero hacer scripts en sublime y guardarlos para poder volver a ellos en caso de ser necesario. En el caso de spark al yo tener más experiencia con scala lo que hice fue lanzar los scripts con la spark-shell con el siguiente comando spark-shell -i script.scala  o sino desde la consola usando :load script.scala.
  • En el caso de spark al ser la versión 1.6 preferí trabajar con dataframes a tener que hacer la operativa con RDDs.
  • Hacer muchos ejercicios, prácticos. En mi caso creé un repositorio en Github donde hice unos cuantos ejercicios, unos inventados por mí y otros del sitio web itversity.
  • Es importante hacer una buena gestión del tiempo, sugiero tomar un par de minutos para leer las preguntas e ir a por las más sencillas al comenzar y si en algún momento te bloqueas, pues pasar a la siguiente de inmediato, de igual forma mientras se esté ejecutando una operación (puede que tarde 1 min + o -) aprovechar para al menos leer el enunciado siguiente.
  • Muy importante mucho cuidado con los datos fuentes y de ser posible respaldarlos.
  • La consola de la máquina virtual tiene un tamaño de fuente algo pequeño por lo que no es mala idea hacer un zoom in.

Yo he de confesar que de las 9 preguntas que me salieron solo respondí 8, porque no me dio tiempo he allí la razón por la que hago hincapié en la buena gestión del tiempo. El examen no resulta difícil si has estudiado, pero al contar con solo 2 horas es necesario haber practicado antes para no perder mucho tiempo buscando en la documentación.

Por último desearles mucha suerte y reiterar mi fascinación con esta certificación, he aprendido muchísimo y el examen en sí me genero una sensación de satisfacción increíble al conseguir aprobarla, sobre todo esa buena vibra de poner en practica todo aquello practicado.

 

Estadística simple con Spark V2

Sigo con mi pruebas con lo nuevo (y no tan nuevo de Spark 2), hoy comparto con ustedes una versión 2 de mi anterior post Estadística simple con Spark, pero en esta ocasión realizado con Spark 2.

¿Que tiene de nuevo esta versión?

Primeramente utiliza el módulo spark-csv lo cual nos hace más simple la carga del fichero en un Dataset. Segundo, que no manipulamos en ningún instante RDD alguno, sino que por el contrario estamos trabajando con DataFrames representados mediante la clase Dataset. Entre las cosas nuevas que contempla esta versión hecha en Spark 2 es que mientras antes al realizar un groupBy sobre un DataFrame esto nos devolvía un GroupedData ahora nos devuelve un RelationalGroupedData, esto debido a un cambio de nombre que se le ha dado a partir de esta nueva versión de Spark.

Esta nueva versión realizada con SparkSQL con Datasets tiene varias ventajas, la primera es simplicidad, es mucho mas simple, mas fácil de entender el código además de mas corto, de hecho con menos lineas obtuve más información que con la versión elaborada con RDD’s, es decir, es mas versátil. Por otro lado aunque hay que tener algo de nociones de conjuntos lo interesante es que esta versión esta libre de código SQL.

Sin más dilación he aquí el código y el enlace al proyecto en Github.

Para que comparen los resultados obtenidos aquí con respecto a la entrada anterior dejo un pantallazo de lo obtenido al ejecutarlo en mi local.

promedios por distrito

promedios por distrito

Otras agregaciones por distrito

Otras agregaciones por distrito

Total personas por distrito

Total personas por distrito